

APR-3100N Series

Industrial AP/VPN/Router IEEE 802.11a/b/g/n

User Manual

Version 1.0

© Copyright 2014 Antaira Technologies, LLC

All Rights Reserved

This document contains information, which is protected by copyright. Reproduction, adaptation or translation without prior permission is prohibited, except as allowed under the copyright laws.

Trademark Information

Antaira is a registered trademark of Antaira Technologies, LLC, Microsoft Windows and the Windows logo are the trademarks of Microsoft Corp. NetWare is the registered trademark of Novell Inc. WMM and WPA are the registered trademarks of Wi-Fi Alliance. All other brand and product names are trademarks or registered trademarks of their respective owners.

Notice: Copyrights © 2014 by Antaira Technologies, LLC. All rights reserved. Reproduction, adaptation, or translation without prior permission of Antaira Technologies, LLC is prohibited, except as allowed under the copyright laws.

Disclaimer

Antaira Technologies, LLC provides this manual without warranty of any kind, expressed or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Antaira Technologies, LLC may make improvements and/or changes to the product and/or specifications of the product described in this manual, without prior notice. Antaira Technologies, LLC will not be liable for any technical inaccuracies or typographical errors found in this guide. Changes are periodically made to the information contained herein and will be incorporated into later versions of the manual. The information contained is subject to change without prior notice.

FCC Warning

This equipment has been tested and found to comply with the limits for a Class-B digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy. It may cause harmful interference to radio communications if the equipment is not installed and used in accordance with the instructions. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Caution: Any changes or modifications not expressly approved by the grantee of this device could void the user's authority to operate the equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference, and
- (2) This device must accept any interference received, including interference that may cause undesired operation.

CE Mark Warning

This is a Class-B product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

RF Exposure Warning

The equipment complies with FCC RF exposure limits set forth for an uncontrolled environment. The equipment must not be co-located or operating in conjunction with any other antenna or transmitter.

ICES 003 Statement

This Class B digital apparatus complies with Canadian ICES-003.

Industry Canada Statement:

This device complies with RSS-210 of the Industry Canada Rules. Operation is subject the following two conditions:

- (1) This device may not cause harmful interference, and
- (2) This device must accept any interference received, including interference that may cause undesired operation.

Declaration of Conformity

Antaira declares the following:

Product Type: Wireless Industrial Router

Model No.: APR-3100N conforms to the following product standards:

This device complies with the Electromagnetic Compatibility Directive (89/336/EEC) issued by the Commission of the European Community. Compliance with this directive implies conformity to the following European Norms (in brackets are the equivalent international standards.)

Electromagnetic Interference (Conduction and Radiation): EN 55022 (CISPR 22)

Electromagnetic Immunity: EN 55024 (IEC61000-4-2, 3, 4, 5, 6, 8, 11)

Low Voltage Directive: EN 60 950: 1992+A1: 1993+A2: 1993+A3: 1995+A4: 1996+A11: 1997.

Therefore, this product is in conformity with the following regional standards: FCC Class B: following the provisions of FCC Part 15 directive, CE Mark: following the provisions of the EC directive.

Antaira also declares that:

The wireless card in this product complies with the R&TTE Directive (1999/5/EC) issued by the Commission of the European Community. Compliance with this directive implies conformity to the following:

EMC Standards: FCC: 47 CFR Part 15, Subpart B, 47 CFR Part 15, Subpart C (Section 15.247);
 CE: EN 300 328-2, EN 300 826 (EN 301 489-17)

Therefore, this product is in conformity with the following regional standards: FCC Class B: following the provisions of FCC Part 15 directive, CE Mark: following the provisions of the EC directive.

Industrial Wireless Router

Antaira's Industrial Wireless Ethernet Router

User Manual

Version 1.0 (November 2014)

This manual supports the following models:

APR-3100N

This document is the current official release manual. Please check our website (www.antaira.com) for any updated manual or contact us by e-mail (support@antaira.com).

Table of Contents

1. Introduction	
1.1 Product Overview	
1.2 Product Software Features	1
1.3 Product Hardware Features	2
1.4 Package Contents	2
1.5 Safety Precaution	2
2.1 Physical Dimensions	3
2.2 Front Panel	4
2.3 Top View	4
2.4 LED Indicators	5
2.5 Ethernet Ports	6
2.6 Cabling	7
2.7 Wiring the Power Inputs	7
2.8 Wiring the Fault Alarm Contact.	8
3.1 DIN-Rail Mounting	9
3.2 Wall Mounting	10
4.1 Installation Steps	
5. Web Management 5.1 Web Console Configuration	
5.1.1 About Web-Based Managem	nent12

5.2 Setup 1	4
5.2.1 Basic Setup1	4
5.2.2 DDNS	7
5.2.3 MAC Address Clone 1	9
5.2.4 Advance Routing2	20
5.2.5 Networking	<u>'</u> 1
5.2.6 EoIP Tunnel	:3
5.3 Wireless	<u>'</u> 4
5.3.1 Basic Settings	<u>'</u> 4
5.3.2 SuperChannel	9
5.3.3 Wireless Security 3	0
5.3.4 MAC Filter	1
5.3.5 WDS	2
5.4 Services 3	3
5.4.1 Services 3	3
5.4.2 VPN	5
5.4.3 USB 3	7
5.4.4 Hotspot Portal	7
5.5 Security 3	8

	38
5.5.2 VPN Passthrough	40
5.6 Access Restrictions	41
5.6.1 WAN Access	41
5.7 NAT/QoS	43
5.7.1 Port Forwarding	43
5.7.2 Port Range Forwarding	44
5.7.3 Port Triggering	45
5.7.4 UPnP	46
5.7.5 DMZ	47
5.7.6 QoS	17
5.7.0 Q00	47
5.8 Administration	
	50
5.8 Administration	50 50
5.8 Administration	50 50 52
5.8 Administration	50 50 52 53
5.8 Administration	50 52 53
5.8 Administration	50 52 53 53
5.8 Administration	50 52 53 54

APR-3100N Series User Manual V1.0

6. Terms	61
5.9.5 Sys-Info	60
5.9.4 Bandwidth	59
5.9.3 Wireless	58
5.9.2 LAN	57
5.9.1 Router	56
5.9 Status	56

1. Introduction

Antaira Technologies' industrial wireless devices come with a pre-installed "user friendly" web console interface, which allows users to easily configure and manage units.

1.1 Product Overview

Antaira's APR-3100N series of wireless routers is designed to operate within industrial environments. The router provides a fast and effective means of communicating over a LAN via a wired or wireless connection. Multiple WAN connection types are provided for easy access to the internet. The APR-3100N series is an 802.11a/b/g/n high-performance wireless device. It is capable of data transfer rates up to 300 Mbps. It is easy to extend the reach and number of computers connected to your wireless network. The APR-3100N wireless router's VPN capability creates encrypted "tunnels" through the internet, allowing a remote office or traveling users to securely connect into the user's corporate network from off-site.

It is a fully manageable industrial Ethernet device that supports the standard Layer 3 Ethernet configurable settings. This product series is IP30 rated and DIN-rail mountable that provides a standard operating temperature range (-10°C to 60°C) and an extended operating temperature range (-35°C to 75°C).

1.2 Product Software Features

- Effortless installation via configurable Universal Plug and Play (UPnP) integration with an intuitive Graphical User Interface (GUI) on UPnP-supported operating systems (Windows ME and XP).
- Intuitive web-based management interface to simplify operation and support.
- Ethernet connectivity to the Internet or network through a network interface card (NIC), providing 10/100 Mbps to the port.
- Firewall that provides many security features such as blocking common hacker attacks, including IP Spoofing, Ping flood, Stealth Scan, ICMP flooding etc.
- Advanced firewall released configuration to extend the capability and security, including a virtual server, port trigger, DMZ host, UPnP auto forwarding, IP filter and MAC filter.

1.3 Product Hardware Features

- System Interface and Performance
 - All RJ-45 ports support Auto MDI/MDI-X Function
 - · Store-and-forward switching architecture
 - 8K MAC address table
- Power Input
 - DC 12~48V redundant with a 6-pin removal terminal block
 - One user programmable alarm relay contact
- Operating Temperature
 - Standard operating temperature models: -10°C to 60°C
 - Extended operating temperature models: -35°C to 75°C
- Case/Installation
 - IP-30 protection metal housing
 - Grounding Screw for protection
 - DIN-Rail and wall mount design

1.4 Package Contents

- 1- APR-3100N series: Industrial 802.11 a/b/g/n Access Point/VPN/Router
- 2- Reverse SMA connector antennas
- 1-Product CD
- 1- Din-Rail & wall mounting bracket with screws
- 1-RJ45 to DB9 serial console cable

1.5 Safety Precaution

Attention:

If the DC voltage is supplied by an external circuit, please use a protection device on the power supply input. The industrial APR-3100N series hardware specs, ports, cabling information, and wiring installation will be described within this user manual.

2. Hardware Description

2.1 Physical Dimensions

Figure 2.1, below, shows the physical dimensions of Antaira's APR-3100N series: industrial 802.11a/b/g/n access point/VPN/router.

(W x D x H) is **46mm x 115mm x 155mm**

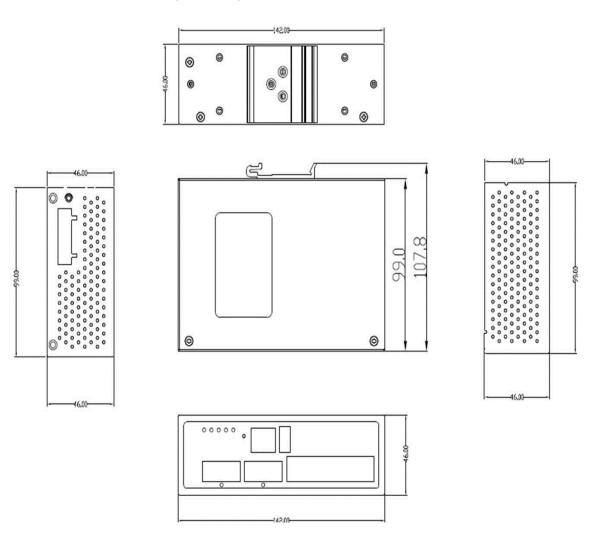


Figure 2.1

APR-3100N Series Physical Dimensions

2.2 Front Panel

The front panel of the APR-3100N series: industrial 802.11a/b/g/n access point/VPN/router is shown below in *Figure 2.2*.

Figure 2.2
The Front Panel of APR-3100N Series

2.3 Top View

Figure 2.3, below, shows the top panel of the APR-3100N series that is equipped with one 6-pin removal terminal block connector for dual DC power inputs (12~48VDC).

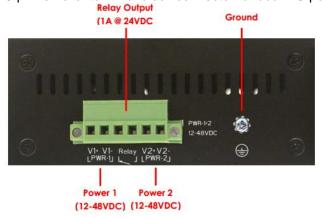


Figure 2.3

Top Panel View of APR-3100N Series

2.4 LED Indicators

There are LED light indicators located on the front panel of the industrial access point/VPN/router that display the power status and network status. Each LED indicator has a different color and has its own specific meaning (*Table 2.1*).

LED	Color	Description	
	PWR1	Green	Powerinput1is active
ACT	FVVIXI	Off	Powerinput1isinactive
	PWR2	Green	Powerinput2is active
	PVVKZ	Off	Powerinput2isinactive
	PWR1	Red	No Power going into PWR1
	FVVI	Off	Power detected going into PWR1
Fail	PWR2	On	No Power going into PWR2
		Off	Power detected going into PWR2
		Blinking	Unit not ready/ Boot sequence
Diag	Green	Off	Unit is ready
10// 0.51		Red	LED 1 < 25%
WLAN	Green/Red	Green	LED 2 < 50%
		Green	LED 3 < 75%
		Green	LED 4 < 100%
		On	Connected to network, 10/100Mbps
LAN Port 1 & 2		Flashing	Networking is active
		Off	Not connected to network

Table 2.1

LED Indicators for APR-3100N Series

2.5 Ethernet Ports

■ RJ-45 Ports

RJ-45 Ports (Auto MDI/MDIX): The RJ-45 ports are auto-sensing for 10Base-T and 100Base-Tx connections. Auto MDI/MDIX means that the switch can connect to another switch or workstation without changing the straight-through or crossover cabling. See the figures below for the straight-through and crossover cabling schematics.

■ RJ-45 Pin Assignments (Table 2.2)

Pin Number	Assignment
1	TD+
2	TD-
3	RD+
4	Not used
5	Not used
6	RD-
7	Not used
8	Not used

Table 2.2 RJ45 Pin Assignments

Note "+" and "-" signs represent the polarity of the wires that make up each wire pair.

All ports on this industrial Ethernet switch support the automatic MDI/MDI-X operation. Users can use straight-through cables (see the figure below) for all network connections to PCs, servers, other switches and hubs. With straight-through cable pins 1, 2, 3, and 6, at one end of the cable are connected straight through to pins 1, 2, 3 and 6 at the other end of the cable. The table below (*Table 2.3*) shows the 10BASE-T and 100BASE-Tx MDI and MDI-X port pin outs.

Pin MDI-X	Signal Name	MDI Signal Name
1	Receive Data plus (RD+)	Transmit Data plus (TD+)
2	Receive Data minus (RD-)	Transmit Data minus (TD-)
3	Transmit Data plus (TD+)	Receive Data plus (RD+)
6	Transmit Data minus (TD-)	Receive Data minus (RD-)

Table 2.3
Ethernet Signal Pin Outs

The following figures show the cabling schematics for straight-through and crossover.

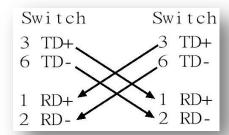


Figure 2.5
Straight-Through Cable Schematic

Figure 2.4
Crossover Cable Schematic

2.6 Cabling

Twisted-pair segments can be connected with an unshielded twisted pair (UTP) or shielded twisted pair (STP) cable. The cable must comply with the IEEE 802.3u 100BaseTx standard (e.g. Category 5, 5e, or 6). The cable between the equipment and the link partner (switch, hub, workstation, etc.) must be less than 100 meters (328 ft.) long.

2.7 Wiring the Power Inputs

Please follow the steps below to insert the power wire.

1. Insert the positive and negative wires into the PWR1 (V1+, V1-) and PWR2 (V2+, V2-) contacts on the terminal block connector as shown below in *Figure 2.7*.

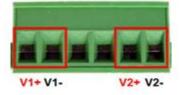


Figure 2.7
Power Terminal Block

2. Tighten the wire-clamp screws to prevent the wires from loosening, as shown below in *Figure* 2.8.

Figure 2.8
Power Terminal Block

Note

- Only use copper conductors, 60/75°C, tighten to 5lbs.
- The wire gauge for the terminal block should range between 18~20 AWG.

2.8 Wiring the Fault Alarm Contact

The fault alarm contact is in the middle of the terminal block connector as the picture shows below. An application example for the fault alarm contact is shown below in *Figure 2.9*.

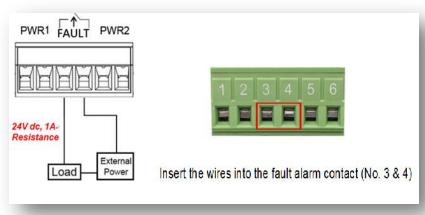
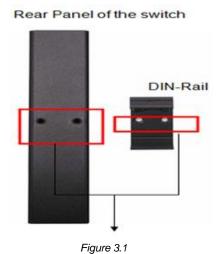


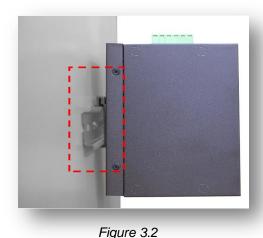
Figure 2.9
Wiring the Fault Alarm Contact


Note

The wire gauge for the terminal block should range between 12 ~ 24AWG

3. Mounting Installation

3.1 DIN-Rail Mounting


The DIN-Rail is pre-installed on the industrial router from the factory. If the DIN-Rail is not on the industrial Ethernet switch, please see *Figure 3.1* to learn how to install the DIN-Rail on the switch.

The Rear Side of the Switch and DIN-Rail Bracket

Follow the steps below to learn how to hang the industrial router.

- 1. Use the screws to install the DIN-Rail bracket on the rear side of the industrial Ethernet switch.
- 2. To remove the DIN-Rail bracket, do the opposite from step 1.
- 3. After the DIN-Rail bracket is installed on the rear side of the switch, insert the top of the DIN-Rail on to the track as shown below in *Figure 3.2*.
- 4. Lightly pull down the bracket on to the rail as shown below in Figure 3.3.
- 5. Check if the bracket is mounted tightly on the rail.
- 6. To remove the industrial Ethernet switch from the rail, do the opposite from the above steps.

Insert the Switch on the DIN-Rail

Stable the Switch on DIN-Rail

3.2 Wall Mounting

Follow the steps below to mount the industrial Ethernet switch using the wall mounting bracket as shown below in *Figure 3.4*.

- 1. Remove the DIN-Rail bracket from the industrial Ethernet switch by loosening the screws.
- 2. Place the wall mounting bracket flush with the back of the industrial Ethernet switch.
- 3. Use the screws to screw the wall mounting bracket on the industrial Ethernet router.
- 4. Use the hook holes at the edges of the wall mounting bracket to hang the industrial Ethernet switch on the wall.
- 5. To remove the wall mount bracket, do the opposite from the steps above.

Figure 3.4
Wall Mounting Bracket on the Router

4. Hardware Installation

4.1 Installation Steps

This section will explain how to install Antaira's APR-3100N series: industrial IEEE 802.11a/b/g/n access point/VPN/router.

Installation Steps

- 1. Unpack the industrial Ethernet router from the original packing box.
- 2. Check if the DIN-Rail bracket is screwed on the industrial Ethernet router.
 - If the DIN-Rail is not screwed on the industrial Ethernet router, please refer to the DIN-Rail Mounting section for DIN-Rail installation.
 - If you want to wall mount the industrial Ethernet router, please refer to the Wall
 Mounting section for wall mounting installation.
- To hang the industrial Ethernet router on a DIN-Rail or wall, please refer to the Mounting Installation section.
- 4. Power on the industrial Ethernet router and then the power LED light will turn on.
 - If you need help on how to wire power, please refer to the Wiring the Power Inputs section.
 - Please refer to the LED Indicators section for LED light indication.
- 5. Prepare the twisted-pair, straight-through category 5 cable for Ethernet connection.
- Insert one side of the RJ-45 cable into router's Ethernet port and on the other side into the
 networking device's Ethernet port, e.g. switch, PC or server. The Ethernet port's (RJ-45) LED
 on the industrial Ethernet router will turn on when the cable is connected to the networking
 device.
 - Please refer to the LED Indicators section for LED light indication.
- When all connections are set and the LED lights all show normal, the units connection is complete.

5. Web Management

5.1 Web Console Configuration

This section introduces the configuration by web browser.

5.1.1 About Web-Based Management

All of Antaira's industrial managed routers are embedded with HTML web console interfaces that have a flash memory on the CPU board. It is a "user friendly" design with advanced management features that allow users to manage the router from anywhere on the network through any Internet browser, such as Internet Explorer (version 9.0 or above is recommended), Firefox, Chrome and many more.

Preparing for Web Console Configuration

Antaira's industrial router comes with a factory default value outlined below:

Default IP Address: 192.168.1.1

Default User Name: rootDefault Password: admin

System Login

- 1. Launch any Internet browser
- 2. Type in factory default IP address: http://192.168.1.1 of the router. Press "Enter".
- 3. The login screen appears.

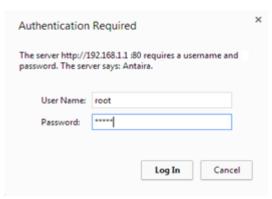


Figure 5.1 - Web Console "Login"

4. Key in the default username: root and password: admin.

5. Click the "Login" button, then the main (status) page of the web console will appear.

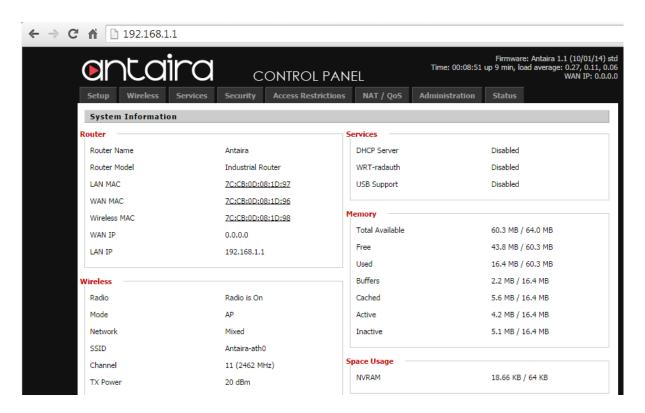
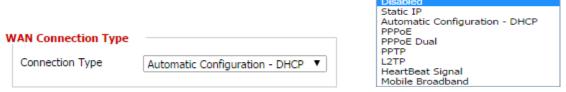


Figure 5.2.

The online image of the switch will display the real-time ports connection status.


5.2 Setup

5.2.1 Basic Setup

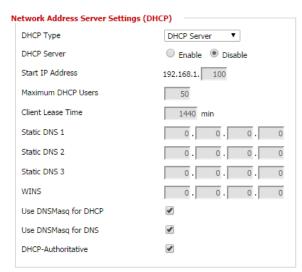
Disabled

5.2.1.1 WAN Setup

WAN Connection Type	Description
Disabled	The WAN port is disabled.
	A static IP address will be used.
Static IP	Required: IP address, subnet mask, gateway and server to be
	entered manually.
Automatic	The router obtains its WAN-side IP address from a DHCP
Configuration- DHCP	server.
	Configure as a PPPoE-Client.
	Username and Password are required.
PPPoE	Advanced Options: Service Name, T-Home VLAN 7 Support,
	PPP Compression, MPPE Encryption, Single Line Multi Link and
	Connection Strategy.
PPPoE Dual	Allows the users to set multiple paths of the WAN. (Used in
PPPoE Dual	Russia)
	Establishes a connection via PPTP.
PPTP	Required: Gateway, Username, Password, and encryption
	information.
	Establishes a connection via L2TP.
L2TP	Required: Gateway, Username, Password, and encryption
	information.
	Short frames sent by the wireless device that contain
HeartBeat Signal	information such as the SSID, encryption information, data rates
	and other information. This information is only used if the ISP
	supports heartbeat signals. **Note that HeartBeat signals are

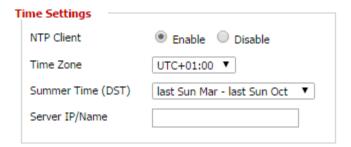
	only used in Australia. **
Mobile Broadband	Used for LTE cellular routers.
Username/Password	Enter the username and password used when logging onto the ISP through a PPPoE or PPTP connection.
Dial String	Used for different types of speeds and service providers.
	AT&T uses *99***1#(UMTS/3G/3.5G)
	Verizon uses *99***3#(UMTS/3G/3.5G)
	Access Point Name is the name of a gateway between a GPRS,
	3G or 4G mobile network and another computer network
APN	(typically the internet).
	For AT&T version units use "broadband" as the APN.
	For Verizon version units use "vzwinternet" as the APN.
Connection Type	The LTE connection type that is being made.

5.2.1.2 Optional Settings


Optional Settings	Description	
Router Name	The desired name to appear for the router.	
Hostname	Necessary for some ISP's and can be provided by the ISP.	
Domain Name	Necessary for some ISP's and can be provided by the ISP.	
мти	Maximum Transmission Unit: Specifics the largest packet size permitted for Internet transmission. Auto will allow the router to select the best MTU for the Internet connection. Manual values entered should be in the 1200 to 1500 range.	
STP	Spanning Tree Protocol: Creating the best path between devices without creating loops.	

5.2.1.3 Router IP

Choose the desired LAN side IP Address, Subnet Mask, Gateway and Local DNS information.

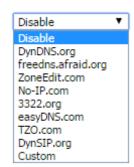

5.2.1.4 Network Address Server Settings (DHCP)

Network Address	Description
Server Settings	
	Server: Keep the default "Enable" to keep the DHCP server
DHCP Type	option. If there is already a DHCP server on the network,
	select "Disable".
	Forwarder: Additional routers can be hardwired to the main
	router on the network. The additional routers will have the type
	set as "Forwarder". Any devices connected to the additional
	routers will receive their DHCP information from the main router.
DHCP Server	Enable if the router is to provide DHCP addressing. Disable if
	there is already a DHCP server active on the network.
Start IP Address	A numerical value for the DHCP server to start with when
	assigning IP addresses. **Note: Do NOT start with 192.168.1.1
	(as the routers IP address).**

Maximum DHCP Users	The maximum number of PCs the router will assign the IP address to go through the DHCP.
Static DNS IP Address	The Domain Name System (DNS) is how domain names are translated to Internet addresses. The ISP provider will provide at least one unique DNS IP addresses.
WINS	Windows Internet Naming Services: Manages the PC's interaction with the internet. If a WINS server is being used, enter the servers IP information here. Leave blank if no WINS server is present.

5.2.1.5 Time Settings

Time Settings	Description
NTP Client	Network Time Protocol: Used for time synchronization between the client and the network time server.
Time Zone	UTC is the "Coordinated Universal Time" based off the mean solar time at Earths prime meridian. Select the time zone the unit is located at.
Summer Time (DST)	Offset of time based from the UTC time.
Server IP/Name	Enter either the servers IP address or assigned name.

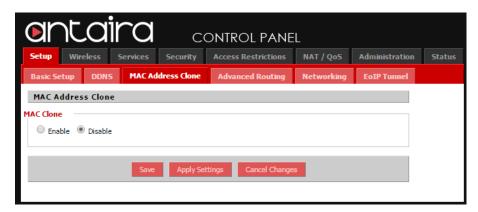

5.2.2 DDNS

5.2.2.1 DDNS Service


The router offers a Dynamic Domain Name System (DDNS). The DDNS allows users to assign a fixed host and domain name to a dynamic internet IP address. This is useful when hosting a website or FTP server.

**Note: Before using this feature, the end user will need to sign up for the DDNS service with a DDNS service provider. The dropdown selection has several possible DDNS service providers. If the end user

does not wish to use a DDNS server, simply leave the dropdown on the default "Disable" setting.

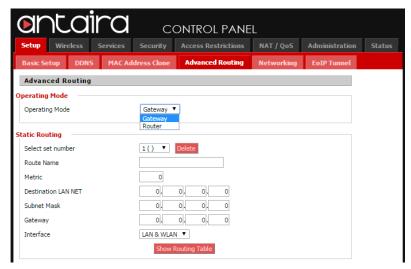

5.2.2.2 Setting up a DDNS Service

DDNS Settings	Description
DDNS Service	Sign up for a DDNS service through a DDNS service provider.
Username	Setup a Username through the DDNS service provider.
Password	Setup a Password through the DDNS service provider.
Hostname	Setup a Hostname through the DDNS service provider.
Туре	Dynamic: Allows a hostname (that was chosen by the user
	through the DDNS service provider) to point to the users IP
	address.
.,,,,,	Static: Like Dynamic service, but the DNS host will not expire
	after 35 days without updates.
	Custom: Creates a managed primary DNS that provides the

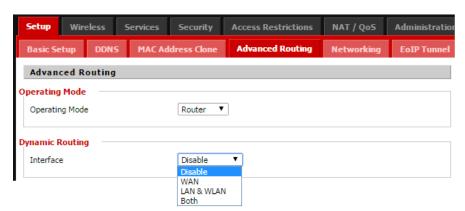
	user more control over the DNS.
Wildcard	Enabling the "Wildcard" feature allows the users host to be aliased to the same IP address and the DNS server.
External IP Check	Allows the DDNS function to pick up the WAN IP from the router instead of checking on an external site.
Force Update Interval	The number represents how often (in days) an update will be performed.
Apply Settings & Save	Any changes made will need to be both applied and saved before they take effect.

5.2.3 MAC Address Clone

By enabling the MAC address clone, the user is able to clone the MAC address of the network adapter onto the router.


5.2.3.1 Enable MAC Address Clone

Enter the MAC address of the network adapter in the "Clone WAN MAC" section, or click the "Get Current PC MAC Address" to fill in the MAC address of the PC currently connected. "Get Current PC MAC" is typically used when establishing a service with certain ISP providers.


5.2.4 Advance Routing

5.2.4.1 Gateway

Advanced Routing	Description
Gateway	
	Gateway: If the router is hosting the Internet connection, the
Operating Mode	router will perform NAT in Gateway mode.
	Router: Select if the other routers are in use on the network.
Select Set Number	A unique router number. The user can set up to 50 routes.
Route Name	The name assigned to a specific route number.
Destination LAN NET	The remote host assigned to the static route.

5.2.4.2 Router

Advanced Routing	Description
Router	
Interface	Tells the end user if the destination IP address is on the LAN & WAN, WAN or Loopback.

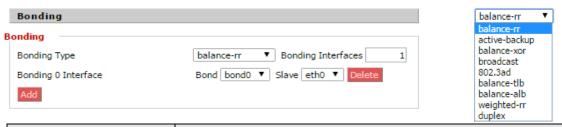
5.2.5 Networking

5.2.5.1 VLAN Tagging

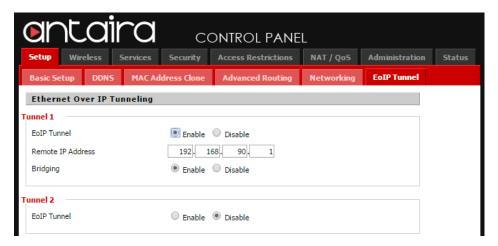
Tagging allows the user to create a new VLAN interface from the standard interface by filtering using defined TAG numbers.

5.2.5.2 Bridging

Bridging	Description
Add	Creates a new empty network bridge for later use.
STP	Spanning Tree Protocol on or off.
Prio	Sets the bridge priority order. (Lower number is higher priority)



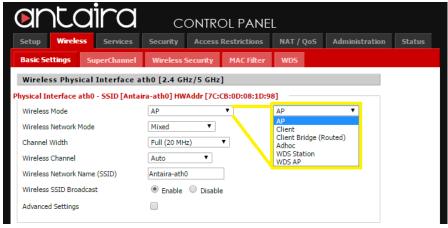
Allows the user to assign an Interface to a network bridge as well as set a priority level.


A table with all of the current bridges and their components can be seen in the 'Bridging' section of the networking tab, as shown above.

5.2.5.3 Bonding

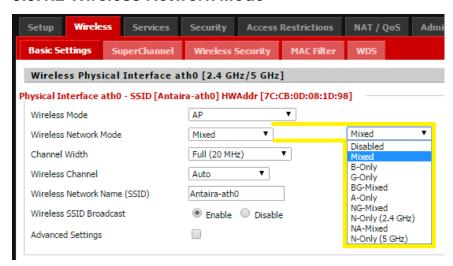
Bonding	Description
Balance-rr	Packet transmission in sequential order from the first available
	slave to the last. This provides load balancing and fault
	tolerance.
Active-Backup	Only one slave in the bond is active. Another slave can only
	become active if the current slave fails.
Balance-xor	Transmission is based on the source MAC address xor'ed with
Dalatice-xor	the destination MAC address.
Broadcast	Transmits all information on to all slave devices.
	IEEE 802.3ad LACP creates aggregation groups based on
802.3ad	similar speeds and duplex settings.
	**Note: Connected switches need to support the LACP.
	Transmit Load Balancing that does not require any special
Balance-tlb	switch support. Outgoing traffic is distributed based on the
Daiance-tib	current load of each slave. If a slave unit fails to receive traffic
	another slave will then take over the traffic from the failed slave.
	Adaptive Load Balancing is for IPV4 traffic and does not require
	special switch settings. Load balancing is performed though
	ARP negotiation. Bonding drivers intercept the ARP replies
Balance-alb	from the loacal system and overwrites the source hardware
	address with the unique hardware address of the slaves in the
	bond. Creating different hardware addresses for different
	peers to the server.
	Round Robin bonding will use weights assigned to specific
	slaves. Each slave will have a assigned weight through ioctl.
Weighted-rr	The values will be used at the start of each cycle. Each slave
weightea-m	will have a token counter restored to its's weight. The tokens
	are then used to purchase emitted frames. When there are no
	tokens available then a new cycle begins.
Duplex	Full-duplex connections of dedicated send and receive links.

5.2.6 EoIP Tunnel

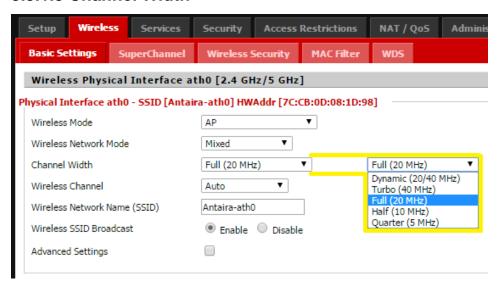

The APR-3100N series supports up to 10 Ethernet over IP Tunnels. EoIP allows the user to create a tunnel between two routers in addition to an IP connection. The EoIP connection is available when the bridging function of the router is enabled. The user can create tunnels over the Internet, through encrypted tunnels or over 802.11b ad-hock wireless networks. All changes must be applied and saved before they take effect.

5.3 Wireless

5.3.1 Basic Settings


All the basic wireless settings can be configured in this page. Operators can change the Wireless Mode, Network Mode, Channel Width, Wireless Channel and SSID

5.3.1.1 Wireless Mode


AP: The default setting. Access point mode will allow the router to act as a connection point for wireless client devices to connect with. Client: The client mode is used to connect to with an access point. Client Bridge (Routed): The radio interface is used to connect the LAN side of the router to a remote Access Point. The LAN and the remote AP will be in the same subnet (This is called a "bridge" between two network segments). The WAN side of the router is unused and can be disabled. Use this mode, e.g., to
make the router act as a "WLAN adapter" for a device connected to one of its LAN Ethernet ports. Adhoc: Is a peer-to-peer, point to point, communication that does not use access points. Devices in Adhoc mode communicate directly to each other. WDS Station: Is a proprietary connection with the WDS AP. The WDS Station is like a client, although multiple layer 2 devices can be connected to the WDS Station device.

5.3.1.2 Wireless Network Mode

Basic Settings	Description
	Mixed (see different sections below):
	B-Only: IEEE 802.11b allows a max data rate of 11 Mbits/s
	through a 2.4 GHz wireless connection. If only B-type Wireless
	devices are on the network, use this mode.
	G-Only: IEEE 802.11g allows a max data rate of 54 Mbits/s
	through a 2.4 GHz wireless connection. If only G-type Wireless
	devices are on the network, use this mode.
	BG-Mixed: If B & G type wireless devices are on the network
	A-Only: IEEE 802.11a allows a max data rate of 54 Mbits/s
Wireless Network Mode	through a 5 GHz wireless connection. If only A-type Wireless
	devices are on the network, use this mode.
	NG-Mixed: Is the 802.11n 2.4 GHz band and represents a mix
	of 802.11b, 802.11g and 802.11n modes
	N-Only (2.4 GHz): Improved throughput for 2.4 GHz devices
	that also have the IEEE 802.11n standard.
	NA-Mixed: Is the 802.11n 5 GHz band that represents a mix of
	802.11 and 802.11a
	N-Only (5 GHz): Improved throughput for 5 GHz devices that
	also have the IEEE 802.11n standard.

5.3.1.3 Channel Width

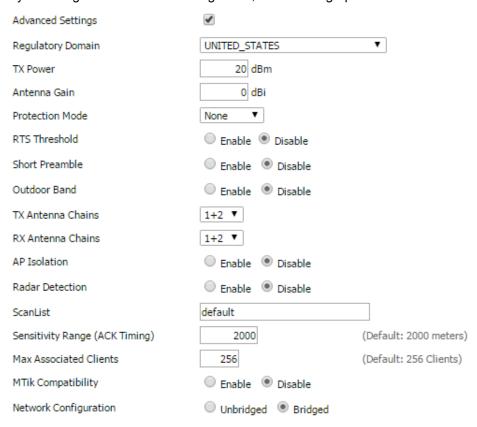
Basic Settings	Description
	Dynamic (20/40 MHz): The unit will auto negotiate between 20
	or 40 MHz channels for the best possible performance. Note-
	Both the AP and Client side need to support the 40 MHz
	channel.
	Turbo (40 MHz): IEEE 802.11a/g/n offer might offer the option
Channel Width	to use 40 MHz for enhanced through put. Note- Both the AP
	and Client side need to support the 40 MHz channel.
	Full (20 MHz): Typical standard, that offers stable throughput in
	environments with more wireless noise.
	Half (10 MHz): Reduces the transmit power by ½ of the original.
	Quarter (5 MHz): Reduces the transmit power by ¼ of the
	original.

5.3.1.4 Wireless Channel

The default wireless channel is set to auto. The user can adjust the wireless channel to select a unique unpopulated channel. The user should be aware of and pay attention to the possibility of neighboring channels overlapping. All devices on the wireless network must use the same channel in order to function appropriately.

5.3.1.5 Extension Channel

The control channel is the main channel that is being used. The extension channel is part of the 40MHz frequency and can be set to above or below the main channel. This extension channel needs to be continuous from the main channel. If the main channel is set to channel one, the unit cannot have an extension channel below, due to there not being any other channels below channel one.


5.3.1.6 Wireless Network Name (SSID)

The SSID is the Service Set Identifier used to identify the operators wireless LAN. The SSID is set by the user in Access Point or Access Point WDS mode. All of the client devices within the range of the access point will receive the broadcasted SSID advertising the SSID.

Wireless SSID Broadcast: Once disabled, the SSID of the access point will no longer be broadcast. This means that client devices will not see the SSID of the unit even though they might within range. A user wishing to connect with a client device to a hidden SSID will need to directly input the SSID and password information. The hidden SSID acts as an additional layer of security, making it harder for unwanted users to connect to the network.

5.3.1.7 Advanced Settings

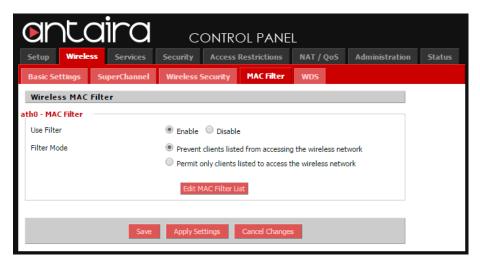
By selecting the "Advanced Settings" box, the following options will become available to the user.

Advanced Settings	Description
Regulatory Domain	
	20 dBm is the default value and provides the radio 100mW of
Tx power	power. Higher values are not recommended due to excessive
	heat being generated by the radio causing a lower lifespan.
Antenna Gain	The antenna's ability to direct radio frequency energy
	CTS protection allows multiple client devices to send data
Protection Mode	simultaneously to a single access point. The CTS (clear to
Protection Mode	send) protection is able to set an order of what device gets to
	transmit, preventing the access point from discarding all info.
	This should stay at the default 2346 value. This specifies the
RTS Threshold	maximum size for a packet before data is fragmented into
	multiple packets.
Short Preamble	Default is Long Preamble, a short preamble can be used but
	communication issues might occur when communicating with
	IEEE 802.11b devices.
Outdoor Band	By enabling the outdoor band, the user is able to reach the


	higher frequency channels.
Tx Antenna Chains	Used based on external antennas to provide optimum
	performance.
Rx Antenna Chains	Used based on external antennas to provide optimum
IX Antenna Onams	performance.
AP Isolation	Default is "Disable", and if enabled, wireless clients are isolated
Ai isolation	and access to and from other wireless clients is stopped.
Radar Detection	Looks for Airport or Military pulses from radars to prevent
Nauai Detection	unintended interference between equipment.
ScanList	
	Default is 2000 meters. The sensitivity range is a timing
	adjustment based on the distance between linking devices.
	When the time needed to transmit is greater than the amount of
Sensitivity Range	time sender waits before resending the same packet. Typically
	the ACK time should be 2 times the distance between devices
	(measured in meters) If the ACK time is to low, information can
	be lost or not connect.
Max Associated Clients	The number of clients can be connected to the access point.
MTIL Commetite liter	Activates a compatibility with Mikrotik RouterOS when
MTik Compatibility	performing tests
	Wireless interface must be "bridged" with the LAN ports (Client
Network Configuration	on wireless and on LAN port). "Unbridged" allows a separation
	between the WLAN and LAN.

5.3.2 SuperChannel

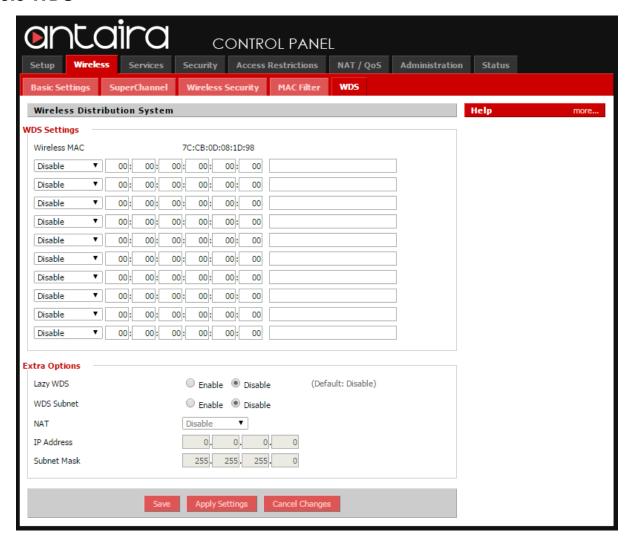
Allows for the use of unique frequencies in the IEEE 802.11g range (2192 Mhz \sim 2732 Mhz) and IEEE 802.11a (4915 mhz \sim 6100 Mhz).


**Note: This feature has not been enabled yet.

5.3.3 Wireless Security

Wireless Security	Description
Disabled	If wireless security has been disabled, anyone can log onto the
	access point.
	Choose between AES or TKIP security and enter a password
WPA Personal	between 8 and 63 characters. The Group Key Renewal can be
	between 0 and 99,999 seconds.
	Uses an external RADIUS server to preform authentication. Use
WPA Enterprise	the IP address of the RADIUS server, the RADIUS port (default is
	1812) and the shared secret from the RADIUS server.
	WPA2 provides additional security from WPA by using the IEEE
WPA2 Personal	802.11i protocols. AES is required when using WPA2 (WPA2 with
	TKIP is not supported).
	Uses an external RADIUS server to preform authentication. Use
WPA2 Enterprise	the IP address of the RADIUS server, the RADIUS port (default is
	1812) and the shared secret from the RADIUS server.
WPA2 Personal Mixed	If there is a mixture of client devices that use WPA2 and WPA
WI AZ I EISOIIAI MIXEG	security. Personal is typically used for small networks (ex: home).
	If there is a mixture of client devices that use WPA2 and WPA
WPA2 Enterprise Mixed	security. Enterprise mode uses a RADIUS server allowing access
	to be controlled in a large network.
RADIUS	Uses a RADIUS server for authentication.
	WEP should only be used when required due to lower security.
	The user can choose either 64-bit or 128-bit. For 64-bit the
WEP	passphrase must be 10 hexadecimal characters. For 128-bit the
	passphrase must be 26 hexadecimal characters. *Note:
	Hexadecimal characters are "0-9" and "A-F".

5.3.4 MAC Filter


The user can set up a wireless MAC filter. The MAC address filter on the APR-3100N can be set to either "Allow" the MAC addresses listed to gain access or the list can be set to "Deny" access by the listed MAC addresses.

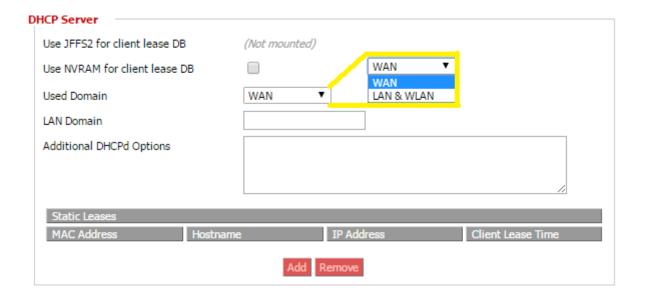
If you want to block specific wireless-equipped PCs from communicating with the router, keep the default setting "Prevent PCs" listed from accessing the wireless network. If you want to allow specific wireless-equipped PCs to communicate with the router, click the radio button next to "Permit only" PCs listed to access the wireless network.

Click the "Edit MAC Filter List" button. Enter the appropriate MAC addresses into the MAC fields.

Click the "Save Settings" button to save your changes. Click the "Cancel Changes" button to cancel your unsaved changes. Click the "Close" button to return to the previous screen without saving changes.

5.3.5 WDS

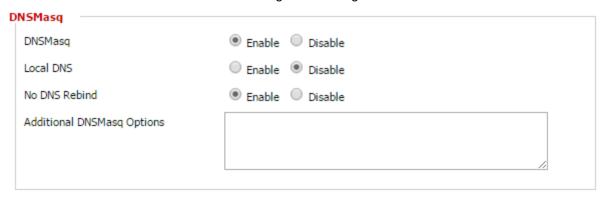
The WDS (Wireless Distribution System) allows the access point to perform bridging, where the access points will only communicate with other WDS access points and associated stations. The MAC address of units forming the WDS must be input to the WDS table. All units within the WDS must have the MAC addresses of the other associating units MAC addresses input to their WDS list.


5.4 Services

5.4.1 Services

DHCP Server

The DHCP server will assign IP addresses to your local devices. The DHCP configuration is on the main setup page, although some functions are available through the services tab.



Used Domain: Users select which domain the DHCP clients should get as their local domain. The WAN domain will be set on the "Setup" screen or the LAN domain can be set here.

LAN Domain: The user can define the local LAN domain which will be used as the local domain for the DNSmasq and DHCP service if chosen above.

DNSmasq

The DNSmasq is a local DNS server. The DNSmasq will resolve all host names known to the router from the DHCP as well as forwarding and caching DNS entries from remote DNS servers.

Local DNS: "Enable" will allow DHCP clients on the LAN to resolve static and dynamic DHCP hostnames.

No DNS Rebind: DNS rebinding is a malicious attack that causes web page visitors to run a client script that can attack other machines on the network.

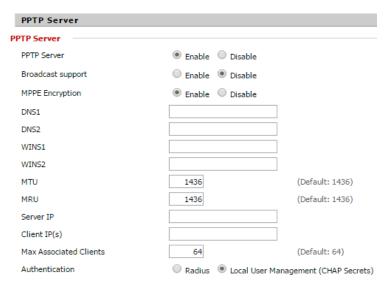
GPS: The user can enable GPS coordinate systems. The information will be sent to a specific port (Default is 2947) the user will then need to use a program such Telnet and Google Earth to do the tracking of the GPS coordinate system. This feature is available for LTE cellular models only.

PPPoE Relay: Will allow the DHCP to duplicate the WAN's IP address from the ISP.

SES /AOSS / EZ-SETUP / WPS Button: The "Reset Button" under the Administration -> Management section must be enabled.


Secure Shell: Enabling SSH allows the user to access the router with a SSH client. SSH Port number for SSH (default is 22)

System Log: Enable the system log to capture system messages. By default they will be collected in the local file /var/log/messages. To send the messages to a different system the user can input the IP address of a remote system log server.


Telnet: Enable a telnet server to connect to the router with telnet. (Default username: *root* password: *password*)

WAN Traffic Counter: The user can view the traffic going through the router. The feature can be disabled. The save router CPU usage the user can view the traffic though SNMP monitoring on a computer.

5.4.2 VPN

PPTP Server: Configuring the PPTP server allows the user to access the LAN remotely at home.

Server IP: The IP address of the router.

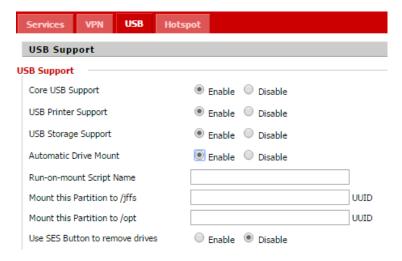
Client IP: A list or range of IP address for remotely connected devices. Note: Do not overlap with the range of DHCP addresses.

CHAP Secrets: A list of usernames and passwords for the VPN login. Note: one user per line (Ex: joe *joepassword*).

MTU: Maximum Transmission Unit.

MRU: Maximum Receive Unit.

PPTP Client		
PPTP Client		
PPTP Client Options	Enable	
Server IP or DNS Name		
Remote Subnet	0, 0, 0	
Remote Subnet Mask	0, 0, 0	
MPPE Encryption	mppe required	
MTU	1436 (Default: 1436)	
MRU	1436 (Default: 1436)	
NAT	Enable	
Username	DOMAIN\\Username	
Password	Unmask	
Additional PPTP Options		
		1


Server IP or DNS Name: The IP address or DNS Name of the VPN server to connect with. **Remote Subnet/Mask:** The remote subnet and subnet mask of the network the user is connecting with.

MPPE Encryption: This is used to connect to similar chipset routers. If the user is connecting to a windows VPN the user would need (mppe required,no40no56,stateless)

User Name: The user name that will be seen when connecting to the VPN server.

OpenVPN: Security setting based on certificates that cannot be created on the router. Please refer to OpenVPN's online documentation for instruction on creating certificates and configuring OpenVPN.

5.4.3 USB

USB	Description
Core USB Support	Default is "Disabled", Select "Enable" to use USB Support
USB Printer Support	Default is "Disabled", Select "Enable" to use Printer Support
USB Storage Support	Default is "Disabled", Select "Enable" to use External Devices
Automatic Drive Mount	Automatically mount connected drives
Run-on-mount Script	Run script from the specified path, wherever a drive is mounted
Name	though the Automatic Drive Mount
Mount this Partition to	Mount partition with a UUID to a specified mounting point
/jiffs	Mount partition with a colo to a specifica mounting point
SES Button	Un-mount drives before disconnecting them

5.4.4 Hotspot Portal

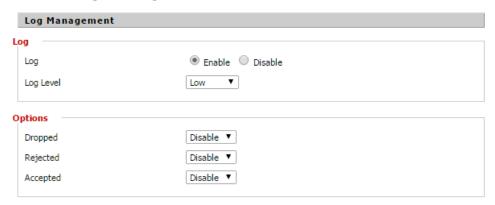
The user can set the router as a Hotspot gateway with authentication and accounting. Most hotspot software requires a server to store the user settings and login information.



5.5 Security

5.5.1 Firewall

The Firewall can be either enabled or disabled. The user can also set additional filters, block certain WAN interface requests and manage logs.


5.5.1.1 Additional Filters

Additional Filters	Description
Filter Proxy	Blocks HTTP requests containing the "host:" string.
Filter Cookies	HTTP requests that contain "cookie:" string are identified and an attempt is made to stop their usage.
Filter Java Applets	Blocks HTTP requests containing URL ending in ".js" or ".class".
Filter ActiveX	Blocks HTTP requests containing URL ending in ".ocx" or ".cab".

5.5.1.2 Block WAN Requests

Block WAN Requests	Description
Block Anonymous WAN	Stone the router from recogning to "ninge" from the WAN
Requests (Ping)	Stops the router from responding to "pings" from the WAN.
Filter Multicast	Prevents multicast packets from reaching the LAN
Filter WAN NAT	Prevents hosts on the LAN from using the WAN address of
Redirection	router to contact servers on the LAN.
Filter IDENT	Prevents WAN access to port 113.
Finalization	The settings must be applied and saved before they take effect.

5.5.1.3 Log Management

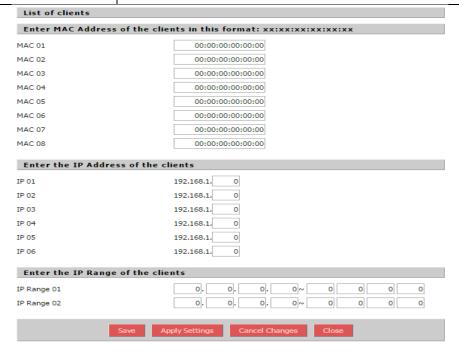
Log Management	Description
Log	Keeps activity logs when "Enabled".
Log Level	Higher log level will log more actions.
Incoming Log	Most recent incoming traffic.
Outgoing Log	Most recent outgoing traffic.
Finalization	The settings must be applied and saved before they take effect.

5.5.2 VPN Passthrough

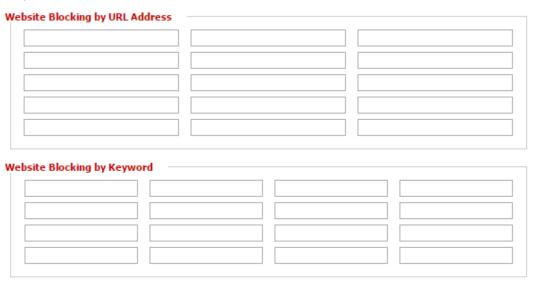
Virtual Private Networking (VPN) is typically used for work-related networking. For a VPN tunnel, the router supports IPSec Passthrough, PPTP Passthough and L2TP Passthough.

VPN Passthrough	Description
IPSec Passthough	Internet Protocol Security (IPSec) are protocols used to implement a secure exchange of packets at the IP layer. Keeping the IPSec "enabled" allows IPSec tunnels to pass
	though the router.
PPTP Passthrough	Point-to-Point Tunneling Protocol (PPTP) allows a VPN session to a windows NT 4.0 or 2000 server. To allow a PPTP tunnel to pass though the router, the PPTP passthough will need to be "enabled".
L2TP Passthrough	Layer Two Tunneling Protocol (L2TP) is an extension of the PPP protocol that enables the ISP to operate Virtual Private Networks (VPS's). The L2TP merges Microsoft and Cisco features to allow L2TP tunnels to pass through the router.
Finalization	The settings must be applied and saved before they take effect.

5.6 Access Restrictions



5.6.1 WAN Access


Access Policy: Allows the user to customize up to 10 different Internet access policies for specific PC's based upon the PC's MAC address.

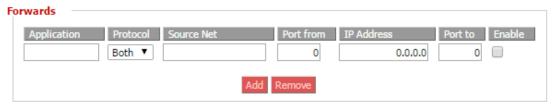
WAN Access	Description
Policy	Select a policy number from the dropdown.
Policy Name	Choose a name for the policy.
PCs	Click the "Edit list of clients" button.
List of Clients	Enter the appropriate IP and MAC addresses. Any changes will
	need to be applied and saved.
Days & Times	Allows the user to set up specific days or times that the listed
	PCs will be blocked from internet access.

Blocked Services: The user can choose to block access to certain internet services through a dropdown menu under the "Catch all P2P Protocols".



WAN Access Cont.	Description
URL Blocking	The user can input specific URL addresses to deny access to those websites.
Keyword	The user can input specific keywords to block access to websites with these keywords in their webpage.
Finalization	The settings must be applied and saved before they take effect.

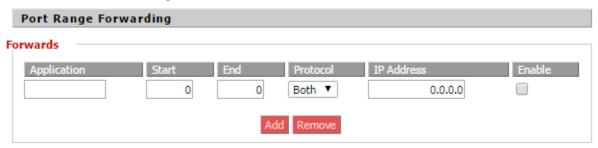
5.7 NAT/QoS



5.7.1 Port Forwarding

Port Forwarding allows the user to set up public services on the network, such as web servers, ftp servers and e-mail servers. Specialized Internet applications are any applications that use Internet access to perform functions such as video conferencing or online gaming.

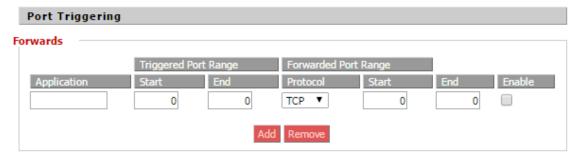
To add a new port forwarding rule, click "add" and fill in the fields listed below.



Port Forwarding	Description
Application	Enter the name of the application.
Protocol	The user will need to select the correct protocol, based on their specific application. The choices are TCP, UDP or both.
Source Net	Forwarded only if the sender matches this IP/net.
Port From	The number of the external port (port number seen by users on the Internet side).
IP Address	The IP address of the PC running the application.
Port To	The number of the internal port (port number used by the application).
Enable	Check to enable port forwarding for the application.
Finalization	The settings must be applied and saved before they take effect.

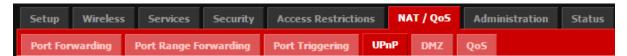
5.7.2 Port Range Forwarding

Port Range Forwarding allows the user to set up public services on the network, such as web servers, ftp servers and e-mail servers. Specialized Internet applications are any applications that use Internet access to perform functions such as video conferencing or online gaming. To add a new port forwarding rule, click "add" and fill in the fields listed below. This allows the user to set a range of ports. If the user would like to only forward a single port, please refer back to the 'Port Forwarding' section.

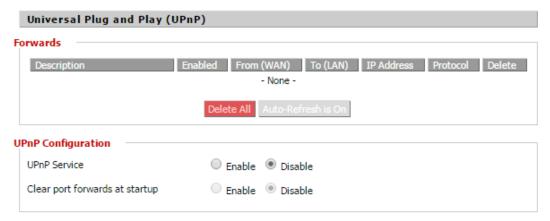


Port Range Forwarding	Description
Application	Enter the name of the application.
Start	The number of the first port in the range that is to be seen by users on the Internet and forwarding to a PC on the local network.
End	The number of the last port of the range that will be seen by users on the Internet and forwarding to a PC on the local network.
Protocol	Choose the correct protocol based upon the application, the choices are TCP, UDP or Both.
IP Address	The IP address of the PC running the application.
Port To	The number of the internal port (port number used by the application).
Enable	Check to enable port forwarding for the application.
Finalization	The settings must be applied and saved before they take effect.

5.7.3 Port Triggering



Port Triggering allows the user to perform port forwarding without setting a fixed PC. By setting a port triggering rule, the user can allow inbound traffic to arrive at a specific LAN host, using different ports than those used for the outbound traffic. The outbound traffic triggers to the inbound ports that the traffic is directed. To add a new port triggering rule, click on the "Add" button and fill in the fields listed and described below.



Port Triggering	Description
Application	Enter the name of the application.
	The number of the first and the last port of the range that should
Triggered Range	be triggered. If a PC sends outbound traffic from those ports,
Triggered Nange	incoming traffic on the 'Forwarded Range' will be forwarded to
	that PC.
	Enter the first and last port of the range, which should be
Forwarded Range	forwarded from the Internet to the PC, which has the 'Triggered
	Range'.
Enable	Check to enable port forwarding for the application.
Finalization	The settings must be applied and saved before they take effect.

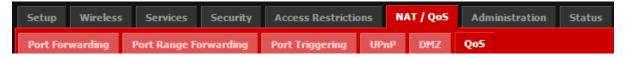
5.7.4 UPnP

Universal Plug and Play is a set of computer network protocols. This technology is for the automatic configuration of devices. The UPnP is able to seamlessly integrate connected devices through control protocols built upon open communication standards.



UPnP	Description
	The forwards table shows all open ports forwarded automatically
Forwards	by the UPnP. Forwards can be individually deleted with the
	trash can, or the "Delete All" will clear all forwards.
UPnP Service	Allows applications to automatically setup port forwarding.
Clear Port Forwards at	If enabled, all UPnP port forwardings are deleted when the
Startup	router starts up.

5.7.5 DMZ



The DeMilitarized Zone (DMZ) feature allows one local user the exposure to the internet for services such as video conferencing. The DMZ hosting forwards all of the ports at the same time to one PC.

DMZ	Description
USE DMZ	Enable or disable the use of DMZ.
DMZ Host IP Address	The IP address of the PC using the DMZ service.

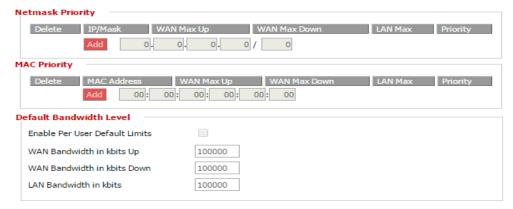
5.7.6 QoS

The Quality of Service (QoS) helps bandwidth management prioritization on the router.

Interactive traffic (Internet, telephone, telnet) will get priority and bulk traffic (file transfers or P2P) will receive lower prioritization.

QoS allows bandwidth control allocation to different services, net masks and MAC addresses. QoS is divided into five different bandwidth tiers; Maximum, Premium, Express, Standard and Bulk. Unclassified services will use the "Standard" bandwidth class.

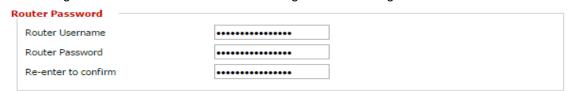
5.7.6.1 QoS


e (Qo5)			
○ En	able Disable		
WAN	▼		
НТВ	▼		
	0		
	0		
ackets with the following f	flags:		
SYN	FIN	RST	
	WAN HITB	Enable Disable WAN HITB 0 0 ackets with the following flags:	Enable Disable WAN HITB 0 0 0 ackets with the following flags:

QoS	Description
Port	When enabled, the user will need to choose to enable the QoS
Tort	on the "WAN" or the "LAN & WLAN".
	HTB: Hierarchical Token Bucket is less resource demanding
	than HFSC. HTB helps in controlling the use of outbound
	bandwidth on a given link. HTB allows you to use one physical
	link to simulate several slower links as well as sending different
	kinds of traffic on the different simulated links. HTB is useful
	for limiting the clients download/upload rates as well as
Packet Scheduler	preventing one user's monopolization of bandwidth.
	HFSC: Hierarchical Fair Service Curve allows the attached
	quest to build an interface tree, thus each queue can have
	further child queues. Each queue can have a priority and a
	bandwidth assigned. The priority controls the time packets
	take to get sent out, while the bandwidth will affect the
	throughput.
	To use the QoS, the user must enter bandwidth values for the
	uplink and downlink. Typical values are between 80%~95% of
Uplink / Downlink	maximum bandwidth.
	*Note: If QoS is only to be applied to the uplink bandwidth, enter
	0 for the downlink. <u>DO NOT</u> enter 0 for the uplink.

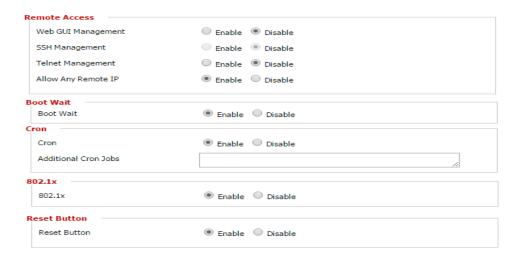
QoS Priority Cont.	Description
	Prioritization of TCP-packets with ACK/SYN/FIN/RST. For the
	most part, the user will benefit from having SYN, FIN and RST
TCB Booket Brierity	checked. ACK will be dependent on how the network is setup
TCP-Packet Priority	and how much P2P activity there will be. Personal testing on
	the network should be performed. If very little P2P activity is
	present it would be beneficial to enable ACT as well.
Service Name	The user can press the "Add" button and choose from a

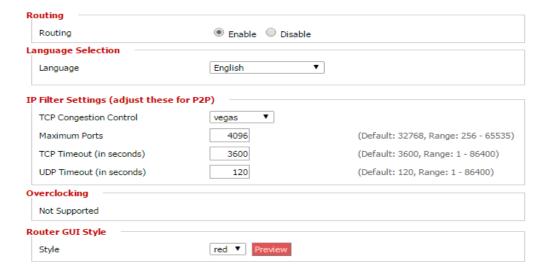
	dropdown menu of available services. The user will select the
	specific service that prioritization is desired on.
Priority	How high of a priority the user would like to set for specific
	services.


QoS Priority Continued	Description
	The netmask is the number of bits of the IP address to match.
Netmask Priority	The user can enter a netmask as /32, if the user puts /0 it will
	mean all IP's.
	To prioritize devices based on MAC address rather than IP
MAC Priority	address, the user can "Add" the MAC address of any specific
	device.
Default Bandwidth	By enabling, the user can set up/down speeds in Kbits.
Level	by enabiling, the user can set up/down speeds in Kbits.

5.8 Administration

5.8.1 Management


The management screen allows the user to change routers settings as detailed below.


Management	Description
Router Username	Default is: "root" The user is suggested to change the routers
Trouter Gormanic	name.
Router Password	Default is: "admin" The user is suggested to change the routers
Notice i assword	password. The length cannot exceed 32 characters.
Re-enter to Confirm	Re-enter the new password for verification.

Management Continued	Description
	The user can select to use either HTTP or HTTPS protocols.
Protocol	Please note that any changes will require a manual reboot of the
	router.
Auto-Refresh	The time in seconds that a webpage will refresh the information.
	Refers to the information in the "Status" Tab then the "Sys-Info"
Enable Info Site	tab. By disabling this, access to this page will not be
	accessible outside the network.
Info Site Password	When the 'Info Site' is enabled, the password protection can be
Protection	setup.
	Hiding of the first 4 hex groups of the MAC address of the DHCP
Info Site MAC Masking	and wireless clients that external users can see through the
	"Sys-Info" page.

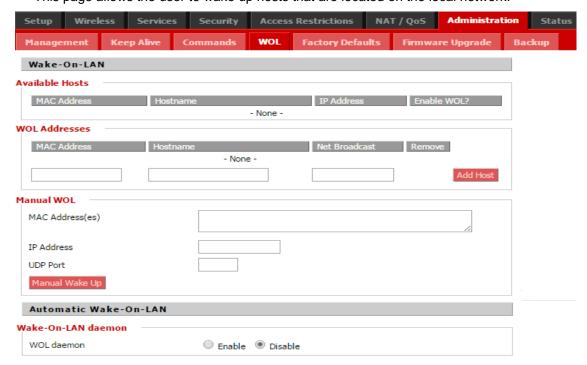
Management Cont	Description
Remote Access	Default is disabled, by enabling this the user is able to managed
	the router from a remote location. The default port is 8080
	Introduces a short delay while booting (5 seconds). This delay
Boot Wait	allows for the user to initiate the download of new firmware if the
BOOL Wall	current firmware will not boot or re-flashing through the web
	interface does not work.
Cron	The cron subsystem schedules execution for Linux commands.
Cron	The command line or startup scripts will be required to use this.
802.1x	A limited 802.1x server to perform proper hand shake with
	Windows XP clients using WPA security.
Reset Button	Short press- Reset the router (reboot)
	Long Press > 10 seconds will reset the unit to factory default
	settings.

Management Cont	Description
Routing	Routing enables the OSPF and RIP routing daemons if those
	features have been set within the 'Advance Routing' page.
Language Selection	Allows the user to switch the language within the router.
IP Filter Settings	If peer-to-peer applications are running on the network, it would
	be beneficial to increase the maximum ports and well as lower
	the TCP/UDP timeouts to improve the stability of the router.
	Maximum Ports: 4096
	TCP Timeout: 120 sec
	UDP Timeout 120 sec


5.8.2 Keep Alive

Keep Alive	Description
Proxy/ Connection Watchdog	The Proxy/Connection watchdog will attempt to access a proxy and reboot if it cannot connect. The user will need to input the IP address of the Proxy as well as the time interval.
Schedule Reboot	The user can schedule reboots for the router based on either a time interval or at a set time on specific days.
WDS/Connection Watchdog	The user is able to "Enable" the WDS/Connection Watchdog. The user can then input a time interval check (Seconds). The final step is inputting the IP address of an internet server (Ex Google is 8.8.8.8).

5.8.3 Commands


The user is able to run commands lines directly in the web interface.

Commands	Description
Command Shell	Fill the text area with the command "Run Commands" to input.
Startup/Shutdown	The user can save specific command lines to be executed at
	either the routers startup or shutdown.
Firewall	The user can input firewall commands into the text area.
I nowan	*Note: Only one command per row.

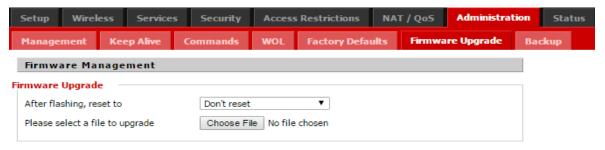
5.8.4 WOL

This page allows the user to wake up hosts that are located on the local network.

WOL	Description
	Show the user a list of hosts to add/remove from the WOL
Available Hosts	address list. Units with static IP addresses as well as units that
	are automatically discovered though DHCP clients.
WOL Addresses	Allows the user to wake individual hosts in the WOL list.
Manual WOL	Allows the user to wake an individual or list of hosts.

5.8.5 Factory Defaults

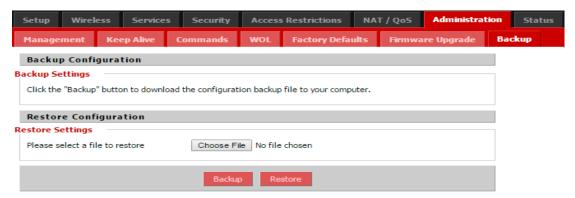
If at some point the unit needs to be reset back to the factory default settings the user can select YES for the "Restore Factory Defaults" section.


To finalize the changes: Be sure to press the "Apply Settings" button

*Note: After resetting to factory defaults, all previous saved settings will be lost and the unit will return to the original settings.

IP Address: 192.168.1.1 IP

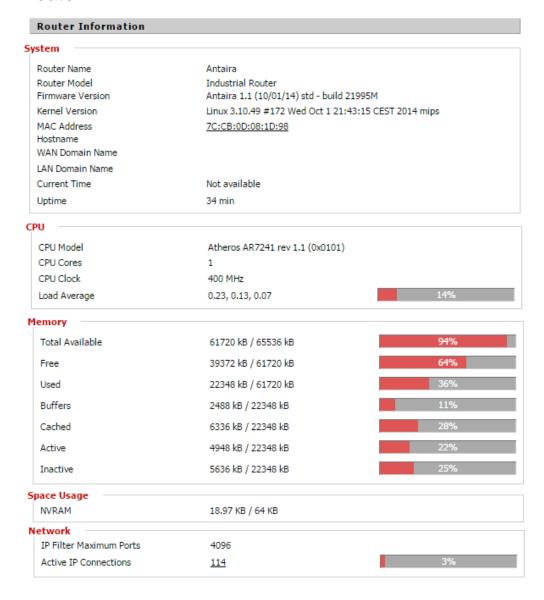
Username: root
Password: admin


5.8.6 Firmware Upgrade

When new firmware releases are available, they will be posted on www.antaira.com. Typically, if the router is not experiencing any issues there is no need to load new firmware, unless new features are implemented and the upgrade is available.

*Note: When new firmware is loaded, the previous configuration settings will be lost. Please make notes of the settings that are being used so the upgrade process is as easy as possible.

5.8.7 Backup


Backup	Description
	By pressing the "Backup" button the user will automatically
Backup Settings	download a .bin file of the current configuration settings on the
	router.
	The user can upload a currently saved configuration file by
	pressing the "Choose File" button, then selecting the correct file
Restore Configuration	from the network.
	*Note: Only restore files that are based on the same firmware
	version and correct router models.

5.9 Status

The status page will display the routers current status and configuration settings. The status pages will be for review purposes only, the user will not be able to make changes to any of the sections within the 'Status' section.

5.9.1 Router

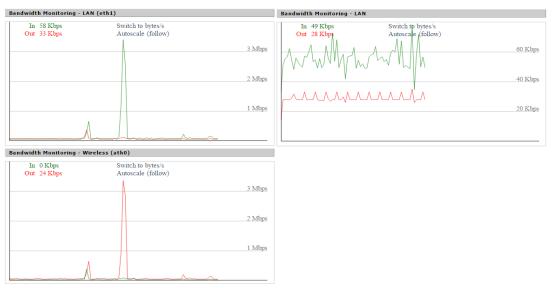
Status Router	Description
System	Basic system information about the router such as the firmware and kernel versions as well as the MAC address.
СРИ	How loaded the CPU is at any given time. Also listed is the CPU model and clock speed.
Memory	The percentages of the memory and how the router is allocating memory usage.
NVRAM	Is the amount of non-volatile memory is available on the router. Non-volatile RAM is memory that will keep the information even if the power is turned off.
Network	IP Filter Maximum Ports default setting is 4096 it is not recommended to increase this number.

5.9.2 LAN

This status screen shows all of the current LAN status and configuration settings. Please note that within the 'Status' tab, all information is read only. Changes are made under the standard tabs, not the 'Status' overview tabs.

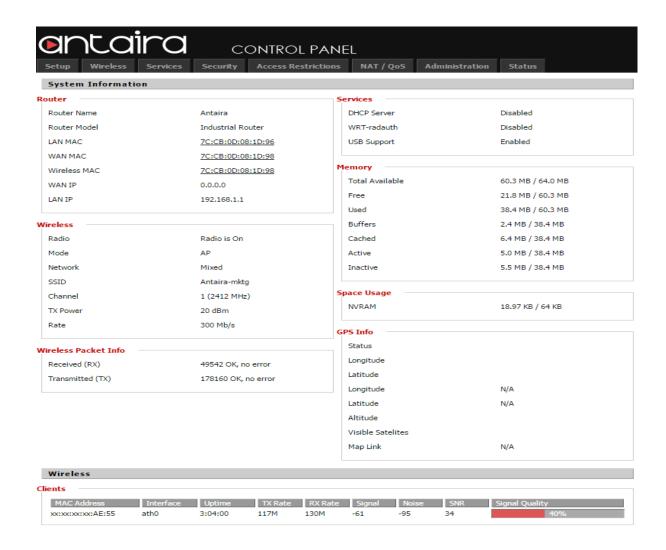
Status LAN	Description
LAN Status	The current LAN setting that is in effect on the router.
Active Clients	A list of devices connected to the router, including their IP and
Active Cheffts	MAC addresses.

5.9.3 Wireless


This status screen shows all of the current wireless statuses and configuration settings. Please note that within the 'Status' tab, all information is read only. Changes are made under the standard tabs, not the 'Status' overview tabs.

Status Wireless	Description
Wireless Status	The current wireless settings on the device such as the
Wileless Status	frequency, SSID, Data Rate and radio mode.
Wireless Packet Info	How much wireless data has been sent and received through
Wileless Facket IIIIO	the wireless unit, as well as any errors that have been detected.
Clients	Information of the wireless clients that are connected to the unit.

5.9.4 Bandwidth


The unit will have bandwidth monitoring tools available for both the LAN and the Wireless of the router. Below are examples of the bandwidth graphs that the user might see.

5.9.5 Sys-Info

The "Sys-Info" tab within the "Status" section will bring the user to the landing page of the unit.

6. Terms

Terms	Value Description
DHCP Client	Enable the DHCP client by checking this box.
	If DHCP fails and the configured IP address is zero, DHCP will retry. If
	DHCP fails and the configured IP address is not a zero, DHCP will stop
	and the configured IP settings will be used. The DHCP client will
	announce the configured System Name as hostname to provide DNS
	lookup.
IP Address	The unit default IP is 192.168.1.254.
	Assign the IP address that the network is using. If the DHCP client
	function is enabled, the user is not required to assign the IP address.
	The network DHCP server will assign the IP address for the switch and it
	will be displayed in this column.
Static	Choose this option to assign the static IP settings for the external
	interface. IP Address and Netmask settings should consist with the
	address space of the network segment where the device resides. If the
	device IP settings and administrator PC (which is connected to the device
	through wired or wireless) IP settings will use different address space, the
	device will become unreachable.
Subnet Mask	Assign the subnet mask of the IP address. If the DHCP client function is
	enabled, the user is not required to assign the subnet mask.
Gateway	Assign the network gateway for the switch. If the DHCP client function is
	enabled, user is not required to assign the Gateway. This is the IP
	address of the host router which resides on the external network and
	provides the point of connection to the next hop towards the internet. This
	can be a DSL modem, Cable modem, or a WISP gateway router. The
	device will direct all the packets to the gateway if the destination host is
	not within the local network. The Gateway IP address should be from the
	same address space (on the same network segment) as the device's
	external network interface (Wireless interface in the Station case and the
	LAN interface in the AP case).
Netmask	This is used to define the device's IP classification for the chosen IP
	address range. This sequence (255.255.25.0) is a typical netmask value
	for Class C networks, which supports the IP address range 192.0.0.x to
	223.255.255.x. Class C network Netmask uses 24 bits to identify the

	network (alternative notation "/24") and 8 bits to identity the host.
DNS	The Domain Name System (DNS) is an internet "phone book" which
	translates domain names to IP addresses. These fields identify the server
	IP addresses where the DNS requests are forwarded by the device.
	Primary DNS server IP is mandatory. It is used by the DNS Proxy and for
	the device management purpose. Secondary DNS server IP address is
	optional. It is used as the fail-over in case the primary DNS server will
	become unresponsive.

Terms	Value Description
	Port forwarding allows specific ports of the hosts residing in the internal
Port	network to be forwarded to the external network. This is useful for a
Forwarding	number of applications such as FTP servers, gaming, etc. where different
	host systems need to be seen using a single common IP address/port.
IP Address	This is the IP of the host which is connected to the internal network and
IP Address	needs to be accessible from the external network.
	This is the TCP/UDP port of the application running on the host which is
Port To	connected to the internal network. The specified port will be accessible
	from the external network.
	This is the TCP/UDP port of the external port running and is the port seen
Port From	by users on the internet. The specified port will be accessible from the
	external network.

Terms	Value Description
	Point-to-Point Protocol over Ethernet (PPPoE) is a virtually private and
	secure connection between two systems which enables encapsulated
	data transport. It is commonly used as the medium for subscribers to
	connect to Internet Service Providers. Select the IP Address option
PPPoE	PPPoE to configure a PPPoE tunnel in order to connect to an ISP. Only
	the external network interface can be configured as PPPoE client as all
	the traffic will be sent via this tunnel. The IP address, Default gateway IP
	and DNS server IP address will be obtained from the PPPoE server after
	PPPoE connection is established. Broadcast address is used for the
	PPPoE server discovery and tunnel establishment. Valid authorization

	credentials are required for the PPPoE connection:
PPPoE	Username to connect to the server (must match the configured on
Username	the PPPoE server).
Password	Password to connect to the server (must match the configured on the PPPoE server).
	The size (in bytes) of the Maximum Transmission Unit (MTU) and
MTU/MRU	Maximum Receive Unit (MRU) used for the data encapsulation while
	transferring it through the PPP tunnel.
	The Demilitarized zone (DMZ) can be enabled and used as a place
	where services can be placed such as Web Servers, Proxy Servers, and
	E-mail Servers such that these services can still serve the local network
Enable DMZ	and are at the same time isolated from it for additional security. DMZ is
	commonly used with the NAT functionality as an alternative for the Port
	Forwarding while makes all the ports of the host network device be visible
	from the external network side.
	Connected to the internal network host, specified with the DMZ IP
	address will be accessible from the external network. With a multicast
	design, applications can send one copy of each packet and address it to
	the group of computers that want to receive it. This technique addresses
DMZ IP	packets to a group of receivers rather than to a single receiver. It
	depends on the network to forward the packets to the hosts which need
	to receive them. Common Routers isolate all the broadcast (thus
	multicast) traffic between the internal and external networks, however
	provides the multicast traffic pass-through functionality

Terms	Value Description
	Determines the packet size of a transmission and, through the use of an
	access point, helps control traffic flow. RTS/CTS (Request to Send /
	Clear to Send) is the mechanism used by the 802.11 wireless networking
	protocol to reduce frame collisions introduced by the hidden terminal
	problem. RTS/CTS packet size threshold is 0-2347 bytes. If the packet
RTS Threshold	size the node wants to transmit is larger than the threshold, the RTS/CTS
	handshake gets triggered. If the packet size is equal to or less than
	threshold the data frame gets sent immediately. System uses Request to
	Send/Clear to Send frames for the handshake which provide collision
	reduction for access point with hidden stations. The stations are sending
	a RTS frame first while data is send only after handshake with an AP is

	_
	completed. Stations respond with the CTS frame to the RTS which
	provides clear media for the requesting station to send the data. CTS
	collision control management has time interval defined 78 during which all
	the other stations hold off the transmission and wait until the requesting
	station will finish transmission.
ACK Timeout	Specifies the ACK Timeout. Every time the station receives the data
	frame it sends an ACK frame to the AP (if transmission errors are
	absent). If the station receives no ACK frame from the AP within the set
	timeout, it re-sends the frame. The performance drops because too many
	data frames are being re-sent, thus if the timeout is set too short or too
	long, it will result in a poor connection and throughput performance.
	Network traffic is always unpredictable and the only basic assurance that
	can be offered is the best effort traffic delivery. To overcome this
	challenge, Quality of Service (QoS) is applied throughout the network.
QoS	This ensures that network traffic is prioritized according to specified
Prioritization	criteria and receives preferential treatments. By traffic prioritization
	function, users can classify the traffic into four classes for differential
	network application. All of Antaira's industrial managed switches support
	four priority queues.
	System warning function is very important for managing a switch. Users
System Warning	can manage the switch by "Syslog", "System Event Log", and "Email
	Server" through the "Services" tab for Advanced Notice in any event type.
	By setting the remote server, the user will receive these system warning
	features through email, whenever any event occurs. It definitely increases
	the flexibility and capability for the user to monitor the remote site network
	and device statuses.

Antaira Customer Service and Support

(Antaira US Headquarter) + 844-268-2472 (Antaira Europe Office) + 48-22-862-88-81 (Antaira Asia Office) + 886-2-2218-9733

Please report any problems to Antaira:

www.antaira.com / support@antaira.com
www.antaira.eu / info@antaira.eu
www.antaira.com.tw / info@antaira.com.tw